Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implements log2 and log10 #1267

Merged
merged 3 commits into from
Jul 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions dpctl/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,8 @@
less_equal,
log,
log1p,
log2,
log10,
logical_and,
logical_not,
logical_or,
Expand Down Expand Up @@ -224,6 +226,8 @@
"logical_or",
"logical_xor",
"log1p",
"log2",
"log10",
"negative",
"positive",
"proj",
Expand Down
50 changes: 48 additions & 2 deletions dpctl/tensor/_elementwise_funcs.py
Original file line number Diff line number Diff line change
Expand Up @@ -563,10 +563,56 @@
)

# U22: ==== LOG2 (x)
# FIXME: implement U22
_log2_docstring_ = """
log2(x, out=None, order='K')

Computes the base-2 logarithm for each element `x_i` of input array `x`.

Args:
x (usm_ndarray):
Input array, expected to have numeric data type.
out ({None, usm_ndarray}, optional):
Output array to populate.
Array have the correct shape and the expected data type.
order ("C","F","A","K", optional):
Memory layout of the newly output array, if parameter `out` is `None`.
Default: "K".
Returns:
usm_narray:
An array containing the base-2 logarithm of `x`.
The data type of the returned array is determined by the
Type Promotion Rules.
"""

log2 = UnaryElementwiseFunc(
"log2", ti._log2_result_type, ti._log2, _log2_docstring_
)

# U23: ==== LOG10 (x)
# FIXME: implement U23
_log10_docstring_ = """
log10(x, out=None, order='K')

Computes the base-10 logarithm for each element `x_i` of input array `x`.

Args:
x (usm_ndarray):
Input array, expected to have numeric data type.
out ({None, usm_ndarray}, optional):
Output array to populate.
Array have the correct shape and the expected data type.
order ("C","F","A","K", optional):
Memory layout of the newly output array, if parameter `out` is `None`.
Default: "K".
Returns:
usm_narray:
An array containing the base-1- logarithm of `x`.
The data type of the returned array is determined by the
Type Promotion Rules.
"""

log10 = UnaryElementwiseFunc(
"log10", ti._log10_result_type, ti._log10, _log10_docstring_
)

# B15: ==== LOGADDEXP (x1, x2)
# FIXME: implement B15
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
//=== log10.hpp - Unary function LOG10 ------
//*-C++-*--/===//
//
// Data Parallel Control (dpctl)
//
// Copyright 2020-2023 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//===---------------------------------------------------------------------===//
///
/// \file
/// This file defines kernels for elementwise evaluation of LOG10(x) function.
//===---------------------------------------------------------------------===//

#pragma once
#include <CL/sycl.hpp>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <type_traits>

#include "kernels/elementwise_functions/common.hpp"

#include "utils/offset_utils.hpp"
#include "utils/type_dispatch.hpp"
#include "utils/type_utils.hpp"
#include <pybind11/pybind11.h>

namespace dpctl
{
namespace tensor
{
namespace kernels
{
namespace log10
{

namespace py = pybind11;
namespace td_ns = dpctl::tensor::type_dispatch;

using dpctl::tensor::type_utils::is_complex;
using dpctl::tensor::type_utils::vec_cast;

template <typename argT, typename resT> struct Log10Functor
{

// is function constant for given argT
using is_constant = typename std::false_type;
// constant value, if constant
// constexpr resT constant_value = resT{};
// is function defined for sycl::vec
using supports_vec = typename std::negation<
std::disjunction<is_complex<resT>, is_complex<argT>>>;
// do both argTy and resTy support sugroup store/load operation
using supports_sg_loadstore = typename std::negation<
std::disjunction<is_complex<resT>, is_complex<argT>>>;

resT operator()(const argT &in)
{
if constexpr (is_complex<argT>::value) {
using realT = typename argT::value_type;
return (std::log(in) / std::log(realT{10}));
}
else {
return std::log10(in);
}
}

template <int vec_sz>
sycl::vec<resT, vec_sz> operator()(const sycl::vec<argT, vec_sz> &in)
{
auto const &res_vec = sycl::log10(in);
using deducedT = typename std::remove_cv_t<
std::remove_reference_t<decltype(res_vec)>>::element_type;
if constexpr (std::is_same_v<resT, deducedT>) {
return res_vec;
}
else {
return vec_cast<resT, deducedT, vec_sz>(res_vec);
}
}
};

template <typename argTy,
typename resTy = argTy,
unsigned int vec_sz = 4,
unsigned int n_vecs = 2>
using Log10ContigFunctor =
elementwise_common::UnaryContigFunctor<argTy,
resTy,
Log10Functor<argTy, resTy>,
vec_sz,
n_vecs>;

template <typename argTy, typename resTy, typename IndexerT>
using Log10StridedFunctor = elementwise_common::
UnaryStridedFunctor<argTy, resTy, IndexerT, Log10Functor<argTy, resTy>>;

template <typename T> struct Log10OutputType
{
using value_type = typename std::disjunction< // disjunction is C++17
// feature, supported by DPC++
td_ns::TypeMapResultEntry<T, sycl::half, sycl::half>,
td_ns::TypeMapResultEntry<T, float, float>,
td_ns::TypeMapResultEntry<T, double, double>,
td_ns::TypeMapResultEntry<T, std::complex<float>, std::complex<float>>,
td_ns::
TypeMapResultEntry<T, std::complex<double>, std::complex<double>>,
td_ns::DefaultResultEntry<void>>::result_type;
};

typedef sycl::event (*log10_contig_impl_fn_ptr_t)(
sycl::queue,
size_t,
const char *,
char *,
const std::vector<sycl::event> &);

template <typename T1, typename T2, unsigned int vec_sz, unsigned int n_vecs>
class log10_contig_kernel;

template <typename argTy>
sycl::event log10_contig_impl(sycl::queue exec_q,
size_t nelems,
const char *arg_p,
char *res_p,
const std::vector<sycl::event> &depends = {})
{
return elementwise_common::unary_contig_impl<
argTy, Log10OutputType, Log10ContigFunctor, log10_contig_kernel>(
exec_q, nelems, arg_p, res_p, depends);
}

template <typename fnT, typename T> struct Log10ContigFactory
{
fnT get()
{
if constexpr (std::is_same_v<typename Log10OutputType<T>::value_type,
void>) {
fnT fn = nullptr;
return fn;
}
else {
fnT fn = log10_contig_impl<T>;
return fn;
}
}
};

template <typename fnT, typename T> struct Log10TypeMapFactory
{
/*! @brief get typeid for output type of std::log10(T x) */
std::enable_if_t<std::is_same<fnT, int>::value, int> get()
{
using rT = typename Log10OutputType<T>::value_type;
;
return td_ns::GetTypeid<rT>{}.get();
}
};

template <typename T1, typename T2, typename T3> class log10_strided_kernel;

typedef sycl::event (*log10_strided_impl_fn_ptr_t)(
sycl::queue,
size_t,
int,
const py::ssize_t *,
const char *,
py::ssize_t,
char *,
py::ssize_t,
const std::vector<sycl::event> &,
const std::vector<sycl::event> &);

template <typename argTy>
sycl::event
log10_strided_impl(sycl::queue exec_q,
size_t nelems,
int nd,
const py::ssize_t *shape_and_strides,
const char *arg_p,
py::ssize_t arg_offset,
char *res_p,
py::ssize_t res_offset,
const std::vector<sycl::event> &depends,
const std::vector<sycl::event> &additional_depends)
{
return elementwise_common::unary_strided_impl<
argTy, Log10OutputType, Log10StridedFunctor, log10_strided_kernel>(
exec_q, nelems, nd, shape_and_strides, arg_p, arg_offset, res_p,
res_offset, depends, additional_depends);
}

template <typename fnT, typename T> struct Log10StridedFactory
{
fnT get()
{
if constexpr (std::is_same_v<typename Log10OutputType<T>::value_type,
void>) {
fnT fn = nullptr;
return fn;
}
else {
fnT fn = log10_strided_impl<T>;
return fn;
}
}
};

} // namespace log10
} // namespace kernels
} // namespace tensor
} // namespace dpctl
Loading