Cobra is a C++ library for metric-semantic-driven navigation in both unstructured and structured environments for mobile robots. Cobra is modular, ROS-enabled, and runs on CPU+GPU.
Cobra comprises three modules:
- A fast and accurate LiDAR-Vision-Inertial Odometry (LVIO) (Cobra-State-Estimation)
- A semantic segmentation (perception) module (high-performance) (Cobra-Semantics)
- A metric-semantic dense mapping system (Cobra-Mapping) and its ROS-enabled plugins (Cobra-ROS-Mapping)
Clone the code
mkdir -p catkin_ws/src
cd catkin_ws/src
git clone [email protected]:gogojjh/cobra.git --recursive
wstool merge cobra/cobra_https.rosinstall
wstool update
cd cobra
Build the docker environment (X86 PC): change the cuda version of Dockerfile_x86 (first line) for you GPU
docker build -t cobra_x86:ros_noetic-py3-torch-cuda -f docker/Dockerfile_x86 .
Build the docker environment (Jetson - ARM PC)
docker build -t cobra_jetson:ros_noetic-py3-torch-jetpackr35 -f docker/Dockerfile_jetson .
Create the docker container
nvidia-docker run -e DISPLAY -v ~/.Xauthority:/root/.Xauthority:rw --network host \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
-v volume_path_to_host:volume_path_to_docker \
--privileged --cap-add sys_ptrace \
-it --name cobra cobra_x86:ros_noetic-py3-torch-cuda \
/bin/bash
Compile the nvblox
cd src/glimpse_nvblox_ros1/nvblox/nvblox
mkdir build && cd build && cmake .. && make -j3
Complie other packages
catkin build pointcloud_image_converter nvblox_ros nvblox_rviz_plugin -DCMAKE_BUILD_TYPE=Release
We release an open-source dataset in Google Drive for real-world tests. The dataset provides:
- 3D LiDAR
- IMU data
- Estimated Odometry
- (Optional: Image)
- (Optional: Estimated 2D Semantic Segmentation)
NOTE: set max_mesh_update_time
as the mesh publish frequency and save mesh to /tmp/mesh_nvblox.ply
in launch
files
Mapping: SemanticKITTI Sequence07 (LiDAR-based semantics)
roslaunch nvblox_ros nvblox_lidar_ros_semantickitti.launch bag_file:=semantickitti_sequence07.bag
Mapping: FusionPortable (With Image-based semantics)
roslaunch nvblox_ros nvblox_lidar_ros_semanticfusionportable.launch bag_file:=20230403_hkustgz_vegetation_sequence00_r3live_semantics_framecam00.bag
roslaunch nvblox_ros nvblox_lidar_ros_semanticfusionportable.launch bag_file:=20220226_campus_road_day_r3live_semantics_framecam00.bag
Navigation:
If you found any of the above modules useful, we would really appreciate if you could cite our work:
@article{jiao2024real,
title={Real-Time Metric-Semantic Mapping for Autonomous Navigation in Outdoor Environments},
author={Jiao, Jianhao and Geng, Ruoyu and Li, Yuanhang and Xin, Ren and Yang, Bowen and Wu, Jin and Wang, Lujia and Liu, Ming and Fan, Rui and Kanoulas, Dimitrios},
journal={IEEE Transactions on Automation Science and Engineering},
year={2024},
publisher={IEEE}
}
Dataset:
@inproceedings{jiao2022fusionportable,
title={FusionPortable: A Multi-Sensor Campus-Scene Dataset for Evaluation of Localization and Mapping Accuracy on Diverse Platforms},
author={Jiao, Jianhao and Wei, Hexiang and Hu, Tianshuai and Hu, Xiangcheng and Zhu, Yilong and He, Zhijian and Wu, Jin and Yu, Jingwen and Xie, Xupeng and Huang, Huaiyang and others},
booktitle={2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={3851--3856},
year={2022},
organization={IEEE}
}