Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for ARMv8.3+ targets #73628

Open
Absolucy opened this issue Jun 22, 2020 · 32 comments
Open

Support for ARMv8.3+ targets #73628

Absolucy opened this issue Jun 22, 2020 · 32 comments
Labels
A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. C-feature-request Category: A feature request, i.e: not implemented / a PR. C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC O-AArch64 Armv8-A or later processors in AArch64 mode O-apple Operating system: Apple (macOS, iOS, tvOS, visionOS, watchOS) T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.

Comments

@Absolucy
Copy link
Contributor

Absolucy commented Jun 22, 2020

Currently, a blocker in a project of mine - Crabapple - is the lack of native arm64e support in Rust.

The aarch64-apple-ios target only emits arm64 (ARMv8) code, which will not work within an arm64e (ARMv8.3+) environment due to it's lack of awareness of Pointer Authentication, leading to segfaults when trying to access a signed pointer.

It is currently possible to work around this, by using a backtrace=false rustc, compiling with --emit=llvm-ir -Clto, and running the resulting IR through an arm64e-aware LLVM (such as apple/llvm-project). Pointer authentication may be worked around by linking to an FFI function that runs ptrauth_strip.

This may require LLVM changes if done, and quite possibly a new target (arm64e-apple-ios, aarch64-apple-ios-armv83, etc)

@Absolucy
Copy link
Contributor Author

In addition, arm64e support important due to the upcoming Mac desktops running Bionic processors (such as an A12Z).

@jonas-schievink jonas-schievink added C-feature-request Category: A feature request, i.e: not implemented / a PR. O-Arm Target: 32-bit Arm processors (armv6, armv7, thumb...), including 64-bit Arm in AArch32 state T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. labels Jun 22, 2020
@Absolucy
Copy link
Contributor Author

Upstream LLVM supports armv8.3, and most likely the Rust LLVM as well.

@jonas-schievink
Copy link
Contributor

Upstream LLVM supports armv8.3, and most likely the Rust LLVM as well.

Weren't you working on building a custom LLVM since upstream doesn't support this yet? The link just goes to an RFC thread on the mailing list with no replies.

@Absolucy
Copy link
Contributor Author

@jonas-schievink I was poorly attempting to jury-rig apple/llvm-project onto rustc. In short, I got arm64e and armv8.3 mixed up.

A quick grep and dig through rust-project/llvm reveals that it has the code for ARMv8.3 and Pointer Authentication support.

@Absolucy Absolucy changed the title Support for arm64e (ARMv8.3+) targets Support for ARMv8.3+ targets Jun 22, 2020
@Absolucy
Copy link
Contributor Author

ARMv8.5 support would also be good, considering that there's a high likelihood than ARM Macs will run on ARMv8.5.

@jonas-schievink jonas-schievink added the A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. label Jun 22, 2020
@Absolucy
Copy link
Contributor Author

Absolucy commented Jun 22, 2020

@glandium
Copy link
Contributor

Note that the macOS 11 SDK has both arm64-macos and arm64e-macos targets, although the arm64 variants don't have an uuid in the system library TBD files.

@glandium
Copy link
Contributor

Upstream LLVM supports armv8.3, and most likely the Rust LLVM as well.

That's not merged in LLVM upstream.

@Absolucy
Copy link
Contributor Author

@glandium my bad.

@emoon
Copy link
Contributor

emoon commented Jun 25, 2020

I'm interested in this as well because of Apple Silicon (i.e arm64 on macOS)

Going forward it will be mandated by Apple that executable released (at least for the App Store) supports both x86_64 and amd64 target. On macOS there is "fat binary" support which makes it possible to have both targets in the same exe/obj/dylib etc file. Clang for example supports that you can have -arch x86_64 and -arch amd64 on the command line to generate the correct binary for this to work. Then the OS will load the correct version depending on the OS version running.

There is a command line tool called lipo that can be used to combine two different compiles, but this (according to Apple) should only be used as a work-around and I think for Rust it would be better to support building for both targets at the same time.

@repi
Copy link

repi commented Jun 25, 2020

We (Embark) are interested in it as well, should we track having a Darwin Mac on ARM target in this issue or file an additional one specifically for it (with some overlap with this)?

@Absolucy
Copy link
Contributor Author

We'd need someone with a Developer Transition Kit to truly test any sort of support for this.

@19h
Copy link

19h commented Jun 26, 2020

The aarch64-apple-ios triple seems slightly ambiguous once there are arm64e targets as pointer-authentication would break unauthenticated environments. Given that arm64e-darwin is on its way, two new triples, aarch64e-apple-darwin and aarch64e-apple-ios, would probably make more sense?

Edit: sorry, this was a typo. I meant to write arm64e-apple-darwin and arm64e-apple-ios.

@Absolucy
Copy link
Contributor Author

@19h aarch64e would be ENTIRELY inaccurate of a name.

@19h
Copy link

19h commented Jun 26, 2020

@Luxxxxy It's unfortunate that both arm64 and aarch64 refer to the same ISA, whereas the former was the result of proprietary work by Apple that only was open-sourced after other vendors published their work on the latter.

Aarch64 is an alias for the ARMv8-A ISA, and it would be confusing to have arm64e coexist with aarch64. But given that arm64e actually references a proprietary extension of the ARMv8-A ISA (it is actually an ABI), it might be reasonable to have it named in a way that clearly separates it from the other.

@ttimpe
Copy link

ttimpe commented Jul 2, 2020

@Luxxxxy If one had such a device, would you be interested in testing something on it?

@Absolucy
Copy link
Contributor Author

Absolucy commented Jul 2, 2020

I have an arm64e phone (iPhone 11, iOS 13.5)

I'd be glad to test something on it, I've been using it to get rustc/cargo working on iOS.

@Absolucy
Copy link
Contributor Author

I am currently adding PAC/arm64e to a fork using Apple's LLVM. Hopefully some of my work can be reused whenever PAC/arm64e support is upstreamed into LLVM.

@ghost
Copy link

ghost commented Jul 23, 2020

that's work on jailbreak only?

@Absolucy
Copy link
Contributor Author

that's work on jailbreak only?

That's how I'm testing it. However, most likely, this will also work on Apple Silicon (ARM) macs. Not sure if iOS lets you submit arm64e slice apps to the app store, though.

@hjmallon
Copy link

arm64e is currently required when building kernel modules for macOS on Apple Silicon machines, but arm64e binaries will not run in userspace (currently arm64, or running x86_64 under Rosetta emulation is required).

@woachk
Copy link

woachk commented Oct 31, 2020

@hjmallon Hello,

The arm64e ABI is currently not considered as final. To run arm64e binaries on macOS on Apple Silicon, add the -arm64e_preview_abi argument to boot-args.

Arm 64-bit macOS supports arm64 binaries, and that's the only supported configuration. Currently, arm64e is only for bundled in the OS applications and libraries, as you can load arm64e binaries in an arm64 process.

@pwn0rz
Copy link

pwn0rz commented Dec 16, 2020

In some cases, the arm64e arch might be "different". For example:

  1. thread_set_state might fail with (os/kern) protection failure if we try to call it from arm64 process to arm64e process.
  2. The returning value of dlsym is PAC signed on arm64e, while left untouched on arm64
  3. Some function like pthread_create_from_mach_thread requires a PAC signed function pointer on arm64e, which is not required on arm64.

It seems that Apple just simply disables PAC on arm64 process to accomplish 2 and 3. However, case 1 can still not be covered if there is no arm64e target. I am not sure whether there is another case of ”cross arch“ interaction like case 1.

@Absolucy
Copy link
Contributor Author

I believe that we may see proper PAC support soon, with #88354

@workingjubilee workingjubilee added the O-AArch64 Armv8-A or later processors in AArch64 mode label Mar 23, 2022
@workingjubilee workingjubilee removed the O-Arm Target: 32-bit Arm processors (armv6, armv7, thumb...), including 64-bit Arm in AArch32 state label Aug 17, 2022
@aviramha
Copy link
Contributor

Any news on this?

@sierkb
Copy link

sierkb commented Dec 19, 2022

Any progress on this issue?

compiler-errors added a commit to compiler-errors/rust that referenced this issue Nov 20, 2023
Add arm64e-apple-ios & arm64e-apple-darwin targets

This introduces

*  `arm64e-apple-ios`
*  `arm64e-apple-darwin`

Rust targets for support `arm64e` architecture on `iOS` and `Darwin`.

So, this is a first approach for integrating to the Rust compiler.

## Tier 3 Target Policy

> * A tier 3 target must have a designated developer or developers (the "target
maintainers") on record to be CCed when issues arise regarding the target.
(The mechanism to track and CC such developers may evolve over time.)

I will be the target maintainer.

> * Targets must use naming consistent with any existing targets; for instance, a
target for the same CPU or OS as an existing Rust target should use the same
name for that CPU or OS. Targets should normally use the same names and
naming conventions as used elsewhere in the broader ecosystem beyond Rust
(such as in other toolchains), unless they have a very good reason to
diverge. Changing the name of a target can be highly disruptive, especially
once the target reaches a higher tier, so getting the name right is important
even for a tier 3 target.
Target names should not introduce undue confusion or ambiguity unless
absolutely necessary to maintain ecosystem compatibility. For example, if
the name of the target makes people extremely likely to form incorrect
beliefs about what it targets, the name should be changed or augmented to
disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name.
Periods (.) are known to cause issues in Cargo.

The target names `arm64e-apple-ios`, `arm64e-apple-darwin` were derived from `aarch64-apple-ios`, `aarch64-apple-darwin`.
In this [ticket,](rust-lang#73628) people discussed the best suitable names for these targets.

> In some cases, the arm64e arch might be "different". For example:
> * `thread_set_state` might fail with (os/kern) protection failure if we try to call it from arm64 process to arm64e process.
> * The returning value of dlsym is PAC signed on arm64e, while left untouched on arm64
> * Some function like pthread_create_from_mach_thread requires a PAC signed function pointer on arm64e, which is not required on arm64.

So, I have chosen them because there are similar triplets in LLVM. I think there are no more suitable names for these targets.

> * Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
The target must not introduce license incompatibilities.
Anything added to the Rust repository must be under the standard Rust
license (MIT OR Apache-2.0).
The target must not cause the Rust tools or libraries built for any other
host (even when supporting cross-compilation to the target) to depend
on any new dependency less permissive than the Rust licensing policy. This
applies whether the dependency is a Rust crate that would require adding
new license exceptions (as specified by the tidy tool in the
rust-lang/rust repository), or whether the dependency is a native library
or binary. In other words, the introduction of the target must not cause a
user installing or running a version of Rust or the Rust tools to be
subject to any new license requirements.
Compiling, linking, and emitting functional binaries, libraries, or other
code for the target (whether hosted on the target itself or cross-compiling
from another target) must not depend on proprietary (non-FOSS) libraries.
Host tools built for the target itself may depend on the ordinary runtime
libraries supplied by the platform and commonly used by other applications
built for the target, but those libraries must not be required for code
generation for the target; cross-compilation to the target must not require
such libraries at all. For instance, rustc built for the target may
depend on a common proprietary C runtime library or console output library,
but must not depend on a proprietary code generation library or code
optimization library. Rust's license permits such combinations, but the
Rust project has no interest in maintaining such combinations within the
scope of Rust itself, even at tier 3.
"onerous" here is an intentionally subjective term. At a minimum, "onerous"
legal/licensing terms include but are not limited to: non-disclosure
requirements, non-compete requirements, contributor license agreements
(CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
requirements conditional on the employer or employment of any particular
Rust developers, revocable terms, any requirements that create liability
for the Rust project or its developers or users, or any requirements that
adversely affect the livelihood or prospects of the Rust project or its
developers or users.

No dependencies were added to Rust.

> * Neither this policy nor any decisions made regarding targets shall create any
binding agreement or estoppel by any party. If any member of an approving
Rust team serves as one of the maintainers of a target, or has any legal or
employment requirement (explicit or implicit) that might affect their
decisions regarding a target, they must recuse themselves from any approval
decisions regarding the target's tier status, though they may otherwise
participate in discussions.
>    * This requirement does not prevent part or all of this policy from being
cited in an explicit contract or work agreement (e.g. to implement or
maintain support for a target). This requirement exists to ensure that a
developer or team responsible for reviewing and approving a target does not
face any legal threats or obligations that would prevent them from freely
exercising their judgment in such approval, even if such judgment involves
subjective matters or goes beyond the letter of these requirements.

Understood.
I am not a member of a Rust team.

> * Tier 3 targets should attempt to implement as much of the standard libraries
as possible and appropriate (core for most targets, alloc for targets
that can support dynamic memory allocation, std for targets with an
operating system or equivalent layer of system-provided functionality), but
may leave some code unimplemented (either unavailable or stubbed out as
appropriate), whether because the target makes it impossible to implement or
challenging to implement. The authors of pull requests are not obligated to
avoid calling any portions of the standard library on the basis of a tier 3
target not implementing those portions.

Understood.
`std` is supported.

> * The target must provide documentation for the Rust community explaining how
to build for the target, using cross-compilation if possible. If the target
supports running binaries, or running tests (even if they do not pass), the
documentation must explain how to run such binaries or tests for the target,
using emulation if possible or dedicated hardware if necessary.

Building is described in the derived target doc.

> * Tier 3 targets must not impose burden on the authors of pull requests, or
other developers in the community, to maintain the target. In particular,
do not post comments (automated or manual) on a PR that derail or suggest a
block on the PR based on a tier 3 target. Do not send automated messages or
notifications (via any medium, including via `@)` to a PR author or others
involved with a PR regarding a tier 3 target, unless they have opted into
such messages.
>    * Backlinks such as those generated by the issue/PR tracker when linking to
an issue or PR are not considered a violation of this policy, within
reason. However, such messages (even on a separate repository) must not
generate notifications to anyone involved with a PR who has not requested
such notifications.

Understood.

> * Patches adding or updating tier 3 targets must not break any existing tier 2
or tier 1 target, and must not knowingly break another tier 3 target without
approval of either the compiler team or the maintainers of the other tier 3
target.
>     * In particular, this may come up when working on closely related targets,
such as variations of the same architecture with different features. Avoid
introducing unconditional uses of features that another variation of the
target may not have; use conditional compilation or runtime detection, as
appropriate, to let each target run code supported by that target.

These targets are not fully ABI compatible with arm64e code.

rust-lang#73628
bors added a commit to rust-lang-ci/rust that referenced this issue Nov 20, 2023
Add arm64e-apple-ios & arm64e-apple-darwin targets

This introduces

*  `arm64e-apple-ios`
*  `arm64e-apple-darwin`

Rust targets for support `arm64e` architecture on `iOS` and `Darwin`.

So, this is a first approach for integrating to the Rust compiler.

## Tier 3 Target Policy

> * A tier 3 target must have a designated developer or developers (the "target
maintainers") on record to be CCed when issues arise regarding the target.
(The mechanism to track and CC such developers may evolve over time.)

I will be the target maintainer.

> * Targets must use naming consistent with any existing targets; for instance, a
target for the same CPU or OS as an existing Rust target should use the same
name for that CPU or OS. Targets should normally use the same names and
naming conventions as used elsewhere in the broader ecosystem beyond Rust
(such as in other toolchains), unless they have a very good reason to
diverge. Changing the name of a target can be highly disruptive, especially
once the target reaches a higher tier, so getting the name right is important
even for a tier 3 target.
Target names should not introduce undue confusion or ambiguity unless
absolutely necessary to maintain ecosystem compatibility. For example, if
the name of the target makes people extremely likely to form incorrect
beliefs about what it targets, the name should be changed or augmented to
disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name.
Periods (.) are known to cause issues in Cargo.

The target names `arm64e-apple-ios`, `arm64e-apple-darwin` were derived from `aarch64-apple-ios`, `aarch64-apple-darwin`.
In this [ticket,](rust-lang#73628) people discussed the best suitable names for these targets.

> In some cases, the arm64e arch might be "different". For example:
> * `thread_set_state` might fail with (os/kern) protection failure if we try to call it from arm64 process to arm64e process.
> * The returning value of dlsym is PAC signed on arm64e, while left untouched on arm64
> * Some function like pthread_create_from_mach_thread requires a PAC signed function pointer on arm64e, which is not required on arm64.

So, I have chosen them because there are similar triplets in LLVM. I think there are no more suitable names for these targets.

> * Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
The target must not introduce license incompatibilities.
Anything added to the Rust repository must be under the standard Rust
license (MIT OR Apache-2.0).
The target must not cause the Rust tools or libraries built for any other
host (even when supporting cross-compilation to the target) to depend
on any new dependency less permissive than the Rust licensing policy. This
applies whether the dependency is a Rust crate that would require adding
new license exceptions (as specified by the tidy tool in the
rust-lang/rust repository), or whether the dependency is a native library
or binary. In other words, the introduction of the target must not cause a
user installing or running a version of Rust or the Rust tools to be
subject to any new license requirements.
Compiling, linking, and emitting functional binaries, libraries, or other
code for the target (whether hosted on the target itself or cross-compiling
from another target) must not depend on proprietary (non-FOSS) libraries.
Host tools built for the target itself may depend on the ordinary runtime
libraries supplied by the platform and commonly used by other applications
built for the target, but those libraries must not be required for code
generation for the target; cross-compilation to the target must not require
such libraries at all. For instance, rustc built for the target may
depend on a common proprietary C runtime library or console output library,
but must not depend on a proprietary code generation library or code
optimization library. Rust's license permits such combinations, but the
Rust project has no interest in maintaining such combinations within the
scope of Rust itself, even at tier 3.
"onerous" here is an intentionally subjective term. At a minimum, "onerous"
legal/licensing terms include but are not limited to: non-disclosure
requirements, non-compete requirements, contributor license agreements
(CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
requirements conditional on the employer or employment of any particular
Rust developers, revocable terms, any requirements that create liability
for the Rust project or its developers or users, or any requirements that
adversely affect the livelihood or prospects of the Rust project or its
developers or users.

No dependencies were added to Rust.

> * Neither this policy nor any decisions made regarding targets shall create any
binding agreement or estoppel by any party. If any member of an approving
Rust team serves as one of the maintainers of a target, or has any legal or
employment requirement (explicit or implicit) that might affect their
decisions regarding a target, they must recuse themselves from any approval
decisions regarding the target's tier status, though they may otherwise
participate in discussions.
>    * This requirement does not prevent part or all of this policy from being
cited in an explicit contract or work agreement (e.g. to implement or
maintain support for a target). This requirement exists to ensure that a
developer or team responsible for reviewing and approving a target does not
face any legal threats or obligations that would prevent them from freely
exercising their judgment in such approval, even if such judgment involves
subjective matters or goes beyond the letter of these requirements.

Understood.
I am not a member of a Rust team.

> * Tier 3 targets should attempt to implement as much of the standard libraries
as possible and appropriate (core for most targets, alloc for targets
that can support dynamic memory allocation, std for targets with an
operating system or equivalent layer of system-provided functionality), but
may leave some code unimplemented (either unavailable or stubbed out as
appropriate), whether because the target makes it impossible to implement or
challenging to implement. The authors of pull requests are not obligated to
avoid calling any portions of the standard library on the basis of a tier 3
target not implementing those portions.

Understood.
`std` is supported.

> * The target must provide documentation for the Rust community explaining how
to build for the target, using cross-compilation if possible. If the target
supports running binaries, or running tests (even if they do not pass), the
documentation must explain how to run such binaries or tests for the target,
using emulation if possible or dedicated hardware if necessary.

Building is described in the derived target doc.

> * Tier 3 targets must not impose burden on the authors of pull requests, or
other developers in the community, to maintain the target. In particular,
do not post comments (automated or manual) on a PR that derail or suggest a
block on the PR based on a tier 3 target. Do not send automated messages or
notifications (via any medium, including via `@)` to a PR author or others
involved with a PR regarding a tier 3 target, unless they have opted into
such messages.
>    * Backlinks such as those generated by the issue/PR tracker when linking to
an issue or PR are not considered a violation of this policy, within
reason. However, such messages (even on a separate repository) must not
generate notifications to anyone involved with a PR who has not requested
such notifications.

Understood.

> * Patches adding or updating tier 3 targets must not break any existing tier 2
or tier 1 target, and must not knowingly break another tier 3 target without
approval of either the compiler team or the maintainers of the other tier 3
target.
>     * In particular, this may come up when working on closely related targets,
such as variations of the same architecture with different features. Avoid
introducing unconditional uses of features that another variation of the
target may not have; use conditional compilation or runtime detection, as
appropriate, to let each target run code supported by that target.

These targets are not fully ABI compatible with arm64e code.

rust-lang#73628
@glandium
Copy link
Contributor

What's missing after #115526 to have rustup target add arm64e-apple-ios work out of the box? (IOW, what is missing for artifacts for these tier 3 targets to be available?)

@aviramha
Copy link
Contributor

@glandium It needs to be promoted to tier 2 AFAIK

@aviramha
Copy link
Contributor

I sent a MCP to do the promotion for arm64-darwin.
rust-lang/compiler-team#717

@glandium
Copy link
Contributor

For what it's worth, LLVM doesn't support CPU_SUBTYPE_PTRAUTH_ABI yet, which is required by Xcode's linker to link arm64e code.

GuillaumeGomez added a commit to GuillaumeGomez/rust that referenced this issue Sep 20, 2024
Add arm64e-apple-tvos target

This introduces

* `arm64e-apple-tvos`

## Tier 3 Target Policy

> * A tier 3 target must have a designated developer or developers (the "target
maintainers") on record to be CCed when issues arise regarding the target.
(The mechanism to track and CC such developers may evolve over time.)

I will be a target maintainer.

> * Targets must use naming consistent with any existing targets; for instance, a
target for the same CPU or OS as an existing Rust target should use the same
name for that CPU or OS. Targets should normally use the same names and
naming conventions as used elsewhere in the broader ecosystem beyond Rust
(such as in other toolchains), unless they have a very good reason to
diverge. Changing the name of a target can be highly disruptive, especially
once the target reaches a higher tier, so getting the name right is important
even for a tier 3 target.
Target names should not introduce undue confusion or ambiguity unless
absolutely necessary to maintain ecosystem compatibility. For example, if
the name of the target makes people extremely likely to form incorrect
beliefs about what it targets, the name should be changed or augmented to
disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name.
Periods (.) are known to cause issues in Cargo.

The `arm64e-apple-tvos` target names like `arm64e-apple-ios`, `arm64e-apple-darwin`.
So, **I have chosen this name because there are similar triplets in LLVM**. I think there are no more suitable names for these targets.

> * Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
The target must not introduce license incompatibilities.
Anything added to the Rust repository must be under the standard Rust
license (MIT OR Apache-2.0).
The target must not cause the Rust tools or libraries built for any other
host (even when supporting cross-compilation to the target) to depend
on any new dependency less permissive than the Rust licensing policy. This
applies whether the dependency is a Rust crate that would require adding
new license exceptions (as specified by the tidy tool in the
rust-lang/rust repository), or whether the dependency is a native library
or binary. In other words, the introduction of the target must not cause a
user installing or running a version of Rust or the Rust tools to be
subject to any new license requirements.
Compiling, linking, and emitting functional binaries, libraries, or other
code for the target (whether hosted on the target itself or cross-compiling
from another target) must not depend on proprietary (non-FOSS) libraries.
Host tools built for the target itself may depend on the ordinary runtime
libraries supplied by the platform and commonly used by other applications
built for the target, but those libraries must not be required for code
generation for the target; cross-compilation to the target must not require
such libraries at all. For instance, rustc built for the target may
depend on a common proprietary C runtime library or console output library,
but must not depend on a proprietary code generation library or code
optimization library. Rust's license permits such combinations, but the
Rust project has no interest in maintaining such combinations within the
scope of Rust itself, even at tier 3.
"onerous" here is an intentionally subjective term. At a minimum, "onerous"
legal/licensing terms include but are not limited to: non-disclosure
requirements, non-compete requirements, contributor license agreements
(CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
requirements conditional on the employer or employment of any particular
Rust developers, revocable terms, any requirements that create liability
for the Rust project or its developers or users, or any requirements that
adversely affect the livelihood or prospects of the Rust project or its
developers or users.

No dependencies were added to Rust.

> * Neither this policy nor any decisions made regarding targets shall create any
binding agreement or estoppel by any party. If any member of an approving
Rust team serves as one of the maintainers of a target, or has any legal or
employment requirement (explicit or implicit) that might affect their
decisions regarding a target, they must recuse themselves from any approval
decisions regarding the target's tier status, though they may otherwise
participate in discussions.
>    * This requirement does not prevent part or all of this policy from being
cited in an explicit contract or work agreement (e.g. to implement or
maintain support for a target). This requirement exists to ensure that a
developer or team responsible for reviewing and approving a target does not
face any legal threats or obligations that would prevent them from freely
exercising their judgment in such approval, even if such judgment involves
subjective matters or goes beyond the letter of these requirements.

Understood.
I am not a member of a Rust team.

> * Tier 3 targets should attempt to implement as much of the standard libraries
as possible and appropriate (core for most targets, alloc for targets
that can support dynamic memory allocation, std for targets with an
operating system or equivalent layer of system-provided functionality), but
may leave some code unimplemented (either unavailable or stubbed out as
appropriate), whether because the target makes it impossible to implement or
challenging to implement. The authors of pull requests are not obligated to
avoid calling any portions of the standard library on the basis of a tier 3
target not implementing those portions.

Understood.
`std` is supported.

> * The target must provide documentation for the Rust community explaining how
to build for the target, using cross-compilation if possible. If the target
supports running binaries, or running tests (even if they do not pass), the
documentation must explain how to run such binaries or tests for the target,
using emulation if possible or dedicated hardware if necessary.

Building is described in the derived target doc.

> * Tier 3 targets must not impose burden on the authors of pull requests, or
other developers in the community, to maintain the target. In particular,
do not post comments (automated or manual) on a PR that derail or suggest a
block on the PR based on a tier 3 target. Do not send automated messages or
notifications (via any medium, including via `@)` to a PR author or others
involved with a PR regarding a tier 3 target, unless they have opted into
such messages.
>    * Backlinks such as those generated by the issue/PR tracker when linking to
an issue or PR are not considered a violation of this policy, within
reason. However, such messages (even on a separate repository) must not
generate notifications to anyone involved with a PR who has not requested
such notifications.

Understood.

> * Patches adding or updating tier 3 targets must not break any existing tier 2
or tier 1 target, and must not knowingly break another tier 3 target without
approval of either the compiler team or the maintainers of the other tier 3
target.
>     * In particular, this may come up when working on closely related targets,
such as variations of the same architecture with different features. Avoid
introducing unconditional uses of features that another variation of the
target may not have; use conditional compilation or runtime detection, as
appropriate, to let each target run code supported by that target.

Understood.

rust-lang#121663
rust-lang#73628
rust-timer added a commit to rust-lang-ci/rust that referenced this issue Sep 20, 2024
Rollup merge of rust-lang#130614 - arttet:arm64e-apple-tvos, r=bjorn3

Add arm64e-apple-tvos target

This introduces

* `arm64e-apple-tvos`

## Tier 3 Target Policy

> * A tier 3 target must have a designated developer or developers (the "target
maintainers") on record to be CCed when issues arise regarding the target.
(The mechanism to track and CC such developers may evolve over time.)

I will be a target maintainer.

> * Targets must use naming consistent with any existing targets; for instance, a
target for the same CPU or OS as an existing Rust target should use the same
name for that CPU or OS. Targets should normally use the same names and
naming conventions as used elsewhere in the broader ecosystem beyond Rust
(such as in other toolchains), unless they have a very good reason to
diverge. Changing the name of a target can be highly disruptive, especially
once the target reaches a higher tier, so getting the name right is important
even for a tier 3 target.
Target names should not introduce undue confusion or ambiguity unless
absolutely necessary to maintain ecosystem compatibility. For example, if
the name of the target makes people extremely likely to form incorrect
beliefs about what it targets, the name should be changed or augmented to
disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name.
Periods (.) are known to cause issues in Cargo.

The `arm64e-apple-tvos` target names like `arm64e-apple-ios`, `arm64e-apple-darwin`.
So, **I have chosen this name because there are similar triplets in LLVM**. I think there are no more suitable names for these targets.

> * Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
The target must not introduce license incompatibilities.
Anything added to the Rust repository must be under the standard Rust
license (MIT OR Apache-2.0).
The target must not cause the Rust tools or libraries built for any other
host (even when supporting cross-compilation to the target) to depend
on any new dependency less permissive than the Rust licensing policy. This
applies whether the dependency is a Rust crate that would require adding
new license exceptions (as specified by the tidy tool in the
rust-lang/rust repository), or whether the dependency is a native library
or binary. In other words, the introduction of the target must not cause a
user installing or running a version of Rust or the Rust tools to be
subject to any new license requirements.
Compiling, linking, and emitting functional binaries, libraries, or other
code for the target (whether hosted on the target itself or cross-compiling
from another target) must not depend on proprietary (non-FOSS) libraries.
Host tools built for the target itself may depend on the ordinary runtime
libraries supplied by the platform and commonly used by other applications
built for the target, but those libraries must not be required for code
generation for the target; cross-compilation to the target must not require
such libraries at all. For instance, rustc built for the target may
depend on a common proprietary C runtime library or console output library,
but must not depend on a proprietary code generation library or code
optimization library. Rust's license permits such combinations, but the
Rust project has no interest in maintaining such combinations within the
scope of Rust itself, even at tier 3.
"onerous" here is an intentionally subjective term. At a minimum, "onerous"
legal/licensing terms include but are not limited to: non-disclosure
requirements, non-compete requirements, contributor license agreements
(CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
requirements conditional on the employer or employment of any particular
Rust developers, revocable terms, any requirements that create liability
for the Rust project or its developers or users, or any requirements that
adversely affect the livelihood or prospects of the Rust project or its
developers or users.

No dependencies were added to Rust.

> * Neither this policy nor any decisions made regarding targets shall create any
binding agreement or estoppel by any party. If any member of an approving
Rust team serves as one of the maintainers of a target, or has any legal or
employment requirement (explicit or implicit) that might affect their
decisions regarding a target, they must recuse themselves from any approval
decisions regarding the target's tier status, though they may otherwise
participate in discussions.
>    * This requirement does not prevent part or all of this policy from being
cited in an explicit contract or work agreement (e.g. to implement or
maintain support for a target). This requirement exists to ensure that a
developer or team responsible for reviewing and approving a target does not
face any legal threats or obligations that would prevent them from freely
exercising their judgment in such approval, even if such judgment involves
subjective matters or goes beyond the letter of these requirements.

Understood.
I am not a member of a Rust team.

> * Tier 3 targets should attempt to implement as much of the standard libraries
as possible and appropriate (core for most targets, alloc for targets
that can support dynamic memory allocation, std for targets with an
operating system or equivalent layer of system-provided functionality), but
may leave some code unimplemented (either unavailable or stubbed out as
appropriate), whether because the target makes it impossible to implement or
challenging to implement. The authors of pull requests are not obligated to
avoid calling any portions of the standard library on the basis of a tier 3
target not implementing those portions.

Understood.
`std` is supported.

> * The target must provide documentation for the Rust community explaining how
to build for the target, using cross-compilation if possible. If the target
supports running binaries, or running tests (even if they do not pass), the
documentation must explain how to run such binaries or tests for the target,
using emulation if possible or dedicated hardware if necessary.

Building is described in the derived target doc.

> * Tier 3 targets must not impose burden on the authors of pull requests, or
other developers in the community, to maintain the target. In particular,
do not post comments (automated or manual) on a PR that derail or suggest a
block on the PR based on a tier 3 target. Do not send automated messages or
notifications (via any medium, including via `@)` to a PR author or others
involved with a PR regarding a tier 3 target, unless they have opted into
such messages.
>    * Backlinks such as those generated by the issue/PR tracker when linking to
an issue or PR are not considered a violation of this policy, within
reason. However, such messages (even on a separate repository) must not
generate notifications to anyone involved with a PR who has not requested
such notifications.

Understood.

> * Patches adding or updating tier 3 targets must not break any existing tier 2
or tier 1 target, and must not knowingly break another tier 3 target without
approval of either the compiler team or the maintainers of the other tier 3
target.
>     * In particular, this may come up when working on closely related targets,
such as variations of the same architecture with different features. Avoid
introducing unconditional uses of features that another variation of the
target may not have; use conditional compilation or runtime detection, as
appropriate, to let each target run code supported by that target.

Understood.

rust-lang#121663
rust-lang#73628
@arttet
Copy link
Contributor

arttet commented Oct 18, 2024

Summary:

@madsmtm
Copy link
Contributor

madsmtm commented Nov 11, 2024

I'll add a few more things:

  • Given that Apple haven't completed upstreaming their LLVM patches for this yet, it is a bit unclear what kind of ABI stability one can expect between compilers (e.g. linking Rust and C code), so I'd be quite weary of making this tier 2 until we are certain in that.
  • @thejpster seemed to have reservations about the architecture name used in the triple being arm64e, do those still apply? And if so, what should we name the targets then? aarch64-apple-darwin-pointerauth, aarch64-apple-ios-simpointerauth, etc.?
  • We'd want to ensure that our asm! supports the necessary pointer authentication extensions (.arch_extension pauth? Dunno how it works), or at least have a test for / documentation that it doesn't.
  • How do we expose this to user code? cfg!(target_feature = "pointer-auth")? Various headers seems to use either #if __has_feature(ptrauth_calls) or #if defined(__arm64e__).
  • The opsem semantics of pointer authentication needs to be discussed a bit more.

And link a few things:

@rustbot label O-apple

@rustbot rustbot added the O-apple Operating system: Apple (macOS, iOS, tvOS, visionOS, watchOS) label Nov 11, 2024
@jieyouxu jieyouxu added the C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC label Nov 13, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. C-feature-request Category: A feature request, i.e: not implemented / a PR. C-tracking-issue Category: An issue tracking the progress of sth. like the implementation of an RFC O-AArch64 Armv8-A or later processors in AArch64 mode O-apple Operating system: Apple (macOS, iOS, tvOS, visionOS, watchOS) T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

No branches or pull requests